Самовосстанавливающиеся предохранители (Self recovery fuse TRF250-600 250V 0.6A)

Страница товара в магазине / Купоны AliExpress
Цена: US$1.20 (за 10 штук)
Поиск товара в других магазинах Китая

Слышал про самовосстанавливающиеся предохранители, но не знал, с чем их едят. Уже в нескольких мультиметрах встречал их в токовой защите. Решил заказать десяток на пробу. Тем более не так-то и дорого.
Не буду нарушать традиций. Смотрим, в каком виде прислали.

Бумажный пакет, «пропупыренный» изнутри. Предохранители были в пакетике с замком.

Заказал немного, всего десять штук.

Этого более чем достаточно для проведения опытов.
Можете разглядеть более внимательно.

Можно сравнить с привычными размерами.

Чтобы не быть голословным, вот фото из моего обзора про мультиметр Pro's Kit MT-1232.

Здесь он стоит вместо предохранителя на 400мА. Немного другая марка, но сути не меняет.
А это уже более известный прибор MASTECH MS8268.

А теперь немного теории. Она необходима. Постараюсь кратко, чтобы особо не напрягать. Кому нужны более глубинные знания – интернет вам в помощь.
Самовосстанавливающийся предохранитель — полимерное устройство с положительным температурным коэффициентом сопротивления, применяемое в защите электронной аппаратуры.
Принцип действия предохранителя основан на резком увеличении сопротивления при превышении порогового тока, протекающего через него. Сопротивление в сработавшем состоянии зависит от следующих факторов: типа используемого устройства, приложенного к нему напряжения U и мощности, рассеиваемой на устройстве. После отключения питания (отключения нагрузки, уменьшения напряжения и т. д.) по истечении некоторого времени вновь уменьшает своё внутреннее сопротивление — самовосстанавливается. Увеличение сопротивления сопровождается нагревом предохранителя примерно до 80 градусов по Цельсию.
Полимерный самовосстанавливающийся предохранитель представляет собой матрицу из непроводящего ток полимера, смешанного с техническим углеродом. В холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, образующими множество проводящих цепочек. Если через предохранитель начинает протекать слишком большой ток, он начинает нагреваться, и в какой-то момент времени полимер переходит в аморфное состояние, увеличиваясь в размерах. Из-за этого увеличения углеродные цепочки начинают разрываться, что вызывает рост сопротивления, и предохранитель нагревается еще быстрее. В конце концов сопротивление предохранителя увеличивается настолько, что он начинает заметно ограничивать протекающий ток, защищая таким образом внешнюю цепь. После устранения замыкания, когда протекающий ток снизится до исходного значения, предохранитель остывает и его сопротивление возвращается к начальному значению.
Такие предохранители часто применяются в бытовых ПЭВМ для защиты от перегрузок или КЗ в цепях USB-, FireWire-портов, и других интерфейсах с подводимым питанием.

С теорией закончу. Пора приступать к проведению экспериментов.
Первым делом решил измерить сопротивление предохранителей (температура окружающего воздуха 22,5˚С). Так как всё имеет своё сопротивление, измерил сначала без оных.

Это значение сопротивления буду вычитать.
Сопротивления предохранителей имели разброс. Поэтому сделал среднестатистическую выборку.

Это я сделал не от нечего делать. В некоторых схемах сопротивление предохранителей критично.
Можно сравнить с обычным предохранителем. Нашёл только один на 0,5А немного необычной формы.

Из этого можно сделать простой вывод. Самовосстанавливающийся предохранитель оказывает практически такое же влияние в схеме (в смысле вносимого в цепь сопротивления).
Теперь осталось проверить, при каком токе он всё же срабатывает.
Всё просто. Взял блок питания. Выставил на нём 9В. Перевёл в режим отсечки по току. Стал понемногу прибавлять.

Сработал предохранитель на токе свыше 1А (по паспорту 0,6А). Ток срабатывания точно поймать не смог. Блок питания перешёл в режим отсечки по напряжению и через секунду ток уменьшился.

Это при плавном увеличении тока. Я так полагаю, если нужно защитить схему от КЗ на токе 600мА, мне надо было заказывать на минимум в полтора раза меньший ток. Вот такая печаль.
И, наконец, самый важный в целях безопасности эксперимент. Хотелось узнать, как поведёт себя предохранитель при коротком замыкании в цепи (при резком увеличении тока). Не разорвёт ли его в клочья? Для этих целей я его тупо вставлю в розетку и посмотрю, как он себя поведёт.

Предохранитель припаял к сетевому шнуру, затем засунул в термоусадку, дабы предотвратить последствия от возможного разрушения.

Всё, что получилось, дополнительно засунул в пластиковую бутылку из-под лимонада (перестраховался). Вилку подключил к сети 220В. Результаты краш-теста можно посмотреть на видео.

Результаты меня вполне удовлетворили.
В конце дам табличку по предохранителям.

Это не совсем те, что у меня, но характеристики схожи.
Вот такие предохранители получил. Всё не так однозначно, как мне казалось, когда их заказывал. Предохранители имеют право на жизнь, но полноценно заменить привычные стекляшки с керамикой вряд ли смогут.
Один предохранитель поставил в мультиметр, которым мы чаще всего пользуемся на работе и в котором они частенько горели при малейшем превышении предельного тока.
Что ещё хотел сказать в конце. Номинал самовосстанавливающихся предохранителей каждый должен подобрать сам в соответствии с решаемыми задачами. Технически грамотному человеку это вовсе не сложно. Когда я заказывал предохранители, инфы на Муське про них совсем не было. У вас она теперь есть. Смотрите на таблицу, изучайте результаты экспериментов и заказывайте то, что считаете более подходящим под ваши задачи.
На этом ВСЁ!
Удачи!
0 комментариев
Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.